
Project: 3D Motion Planning

Explain the Starter Code

Image 1: starter code

1. Explain the functionality of what’s provided
in motion_planning.py and planning_utils.py

These scripts contain a basic planning implementation that includes basic heurisctic, search
algorithm (a* search) which are used to plan the path for drone to arm and fly 10 metres and
land. Backyard_flyer.py calculates waypoint using „calculate_box‟ method which defines 4
waypoints to draw a square whereas motion_planning.py uses „plan_path‟ method to set start
and goal point and calls a_star function from planning_utils.py to calculate waypoints.

Implementing Your Path Planning Algorithm

1. Set your global home position

I opened the colliders.csv and read the first row with code block below.

row1 returned latitude and longitude information with “name value”pattern and as strings.
In order to pass the values as arguments to self.set_home_position method I stripped the
name values and converted values to float.

2. Set your current local position

Current global position is a tuple of 3 values

self._latitude, self._longitude and self._altitude. In the first line below we set a

global_position variable to hold and initialize our current global position. Then passed the value

of this variable and self.global_home to global_to_local() method to convert current global

position to local position.

3. Set grid start position from local position

This is another step in adding flexibility to the start location. As long as it works you‟re good to go!

4. Set grid goal position from geodetic coords

I decleared two variable latitude_goal and longitude_goal and set their initial values to
37.793837 , -122.397745 float values but we can also initialize those variables with values
returned by another function or gui interaction. We converted those geodetic coordinates to NED
coordinates because we need NED coordinates to calculate motion planning.

5. Modify A* to include diagonal motion (or replace A* altogether)

including diagonal motions on the grid that have a cost of sqrt(2) .We need to include all possible
diagonal motions to our action space. I used the below code to include them with a cost of sqrt(2)

 We also have to check if our diagonal movements is off the grid or colliding in an obstacle.

6. Cull waypoints

I used a collinearity test to prune unnecessary waypoints. By this way I got rid of additional
waypoints on the straight line other thanstarting and ending waypoint.

I pruned path before converting path to waypoints and used pruned path to find my new waypoints.

Last execution output results are included in Waypoints.txt

